Computing the average root number of an elliptic surface

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Average Root Numbers in Families of Elliptic Curves

We introduce a height measure on Q to count rational numbers. Through it, we prove a density result on the average value of the root numbers of families of twists of elliptic curves. Zagier and Kramarz computed in [11] the rank of the curves x + y = m, with m an integer < 70, 000. These data suggest that the rank is even for exactly half of the twists of x + y = 1. This conjecture has been prov...

متن کامل

The Average Rank of an Algebraic Family of Elliptic Curves

Let E=Q(T) be a one-parameter family of elliptic curves. Assuming various standard conjectures, we give an upper bound for the average rank of the bers E t (Q) with t 2 Z, improving earlier estimates of Fouvry-Pomykala and Michel. We also show how certain assumptions about the distribution of zeros of L-series might help explain the experimentally observed fact that the average rank of the bers...

متن کامل

Computing the rank of elliptic curves over real quadratic number fields of class number 1

In this paper we describe an algorithm for computing the rank of an elliptic curve defined over a real quadratic field of class number one. This algorithm extends the one originally described by Birch and Swinnerton-Dyer for curves over Q. Several examples are included.

متن کامل

On the Rank of an Elliptic Surface

Nagao has recently given a conjectural limit formula for the rank of an elliptic surface E in terms of a weighted average of bral Frobenius trace values. We show that Tate's conjecture on the order of vanishing of L 2 (E; s) essentially implies Nagao's formula; in particular, we prove Nagao's formula for rational elliptic surfaces. In the case that E is a twist, we reduce Nagao's and Tate's con...

متن کامل

The Average Number of Integral Points on Elliptic Curves Is Bounded

We prove that, when elliptic curves E/Q are ordered by height, the average number of integral points #|E(Z)| is bounded, and in fact is less than 66 (and at most 8 9 on the minimalist conjecture). By “E(Z)” we mean the integral points on the corresponding quasiminimal Weierstrass model EA,B : y2 = x3 + Ax + B with which one computes the naı̈ve height. The methods combine ideas from work of Silve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2019

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2018.07.012